


Class Notes:Doppler Shift Studied With a Rotating Sound Source. 
A rough draft description of the measurements and their interpretation for Assignment 8.
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Figure 1. Class notes for rotating sound source measurements.



Our observed spectrum made using Audacity.  
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Figure 2.  Observed spectra for the stationary sound souce (red) and the rotating sound source (blue).
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Figure 3.  Modeled rotating dish measurements for the 440 Hz source.  The model is available here.  https://www.patarnott.com/atms360/general/class2025/Assignment7_DopplerEffect/HilbertTransform_RotatingSoundSourceModelAndRetrieval_WithPsignalFFT.py.

Some questions to AI:CoPilot:
Why do rotating sound sources have frequency spectra with maxima separated by the rotational frequency?
When a sound source rotates, its motion produces a periodic modulation in the signal received by a fixed observer. This modulation—most notably due to the Doppler effect—causes the instantaneous frequency (and sometimes the amplitude) of the signal to vary in a periodic fashion. The key points are as follows:
1. Periodic Doppler Modulation: As the sound source rotates, the component of its velocity toward or away from the observer changes sinusoidally (or nearly so). For a source emitting a pure tone at frequency , the observed instantaneous frequency becomes

where with frequency  is the rotational frequency and  is the modulation amplitude determined by the maximum radial Doppler shift.
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3. Interpretation of Spectral Maxima: The peaks or maxima in the frequency spectrum appear at intervals of because the modulation is periodic with that frequency. Each “sideband” in the spectrum corresponds to a harmonic of the rotation rate, and the spacing directly reflects the fundamental period of the modulation—that is, the rotation period.
In summary, the rotation of the sound source causes its signal to be frequency modulated (due to the periodic changes in relative motion). The frequency spectrum of an FM signal naturally contains components (sidebands) that are spaced by the modulation frequency—and in this case, that modulation frequency is exactly the rotation rate of the source.
This is why rotating sound sources exhibit spectra with maxima (or sidebands) separated by the rotational frequency.
Would you like further details on the mathematics behind FM sidebands or examples of how this effect is used in practical signal processing?
yes, further details
Below is a more in‑depth explanation with mathematical details and derivation of why a rotating sound source produces a frequency spectrum whose peaks are separated by the rotational frequency.
1. The Basic Model
Consider a sound source emitting a pure tone of frequency
 .

When the source rotates, its motion relative to a fixed observer varies periodically. Because of this periodic motion, the Doppler effect produces a time‑varying frequency shift. For simplicity, assume that the instantaneous observed frequency is given by


where:
·  is the peak frequency shift (determined by maximum radial velocity and the Doppler relation), and
·  is the rotational (or modulation) frequency—i.e., the number of rotations per second.
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For our set up, 

Changing the frequency of the sound at the speaker should increase the modulation index and provide more sidebands in the frequency spectrum.  
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Below is a complete Python program that simulates a frequency‐modulated (FM) signal—representing a rotating sound source—and then computes and plots its Fourier spectrum to reveal sidebands spaced by the rotation frequency. In addition, the code overlays the theoretical sideband amplitudes computed from the Bessel functions (via the Jacobi–Anger expansion) for comparison.  The example above shows it.
python
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import jv  # Bessel functions of the first kind

# ==============================
# Parameters for the FM Signal
# ==============================
f0 = 440.0           # Carrier frequency in Hz
f_rot = 0.75           # Rotation (modulation) frequency in Hz (sidebands will be spaced by 2 Hz)
beta = 5.0            # Modulation index (beta = Δf / f_rot); higher beta spreads power to more sidebands

fs = 8000            # Sampling frequency in Hz (must be high enough to capture the carrier)
T = 20.0               # Total time duration in seconds; longer time gives better frequency resolution

# Time vector
t = np.arange(0, T, 1/fs)

# ==============================
# Generate the FM Signal
# ==============================
# The signal is given by:
#   s(t) = A cos[2π f0 t + β sin(2π f_rot t)]
# This is the canonical form of a frequency-modulated waveform.
A = 1.0  # amplitude (arbitrary units)
s = A * np.cos(2 * np.pi * f0 * t + beta * np.sin(2 * np.pi * f_rot * t))

# ==============================
# Compute the FFT of the Signal
# ==============================
N = len(s)
S = np.fft.fft(s)
f = np.fft.fftfreq(N, d=1/fs)

# Shift FFT so that zero-frequency is in the center.
S_shifted = np.fft.fftshift(S)
f_shifted = np.fft.fftshift(f)

# Normalize the magnitude by the number of samples
mag = np.abs(S_shifted) / N

# We are interested in the spectrum near the carrier frequency.
# Define a mask to zoom in around f0 (say f0 ± 50 Hz)
mask = (f_shifted >= f0 - 50) & (f_shifted <= f0 + 50)

# ==============================
# Theoretical Sideband Amplitudes
# ==============================
# From the Jacobi-Anger expansion, an FM signal can be written as:
#   s(t) = A sum_{n=-∞}^{∞} J_n(β) cos[2π (f0 + n f_rot) t]
# where J_n(β) is the Bessel function of order n.
# We will consider orders from -10 to 10.
orders = np.arange(-10, 11)
theoretical_freqs = f0 + orders * f_rot

# Compute the theoretical amplitude for each sideband.
# Note: In an infinite-length signal, the amplitude at each sideband is A * J_n(beta).
theo_amplitudes = A * np.abs(jv(orders, beta))

# Because the FFT amplitude (from a cosine signal) may be split between positive and negative
# frequency components, we need to scale the theoretical amplitudes for proper comparison.
# Here, we simply scale so that the theoretical central peak (n=0) matches the FFT's central amplitude.
central_idx = np.where(np.isclose(orders, 0))[0][0]
scale_factor = np.max(mag[mask]) / theo_amplitudes[central_idx]
theo_amplitudes_scaled = theo_amplitudes * scale_factor

# ==============================
# Plotting the Spectrum and Theoretical Sidebands
# ==============================
plt.figure(figsize=(10, 6))
plt.plot(f_shifted[mask], mag[mask], label='FFT of FM Signal', lw=2)
plt.xlabel('Frequency (Hz)')
plt.ylabel('Normalized Magnitude')
plt.title('Spectrum of a Frequency-Modulated Signal (Carrier = {:.1f} Hz, f_rot = {:.1f} Hz, β = {:.2f})'.format(f0, f_rot, beta))
plt.grid(True)

# Overlay the theoretical sideband positions and amplitudes
plt.stem(theoretical_freqs, theo_amplitudes_scaled, linefmt='r-', markerfmt='ro', basefmt=" ", label='Theoretical Sidebands (scaled)', use_line_collection=True)
plt.legend()
plt.xlim(f0 - 15, f0 + 15)
plt.show()
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2. Frequency Modulation (FM) and Its Spectral Signature: In frequency modulation
(FM), when a carrier frequency f, is modulated by a periodic signal (with frequency
Fro) the Fourier transform of such a signal is not a single spike at fo, but instead
shows sidebands at frequencies

fotnfes forn=0+1,+2, ..

This happens because the modulated signal can be expanded using Bessel functions as:

cos(2nfot + Bsin(2nfut) ) = Z J,B)cos[2n(fo +nfun)t].

where f is the modulation index and ] are Bessel functions of the first kind.
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2. Modeling as Frequency Modulation (FM)

It is often more insightful fo express the signal in terms of its instantaneous phase, which
is the time integral of the frequency. The pressure signal at the observer can be modeled
as:

() = Acos [27: Jy Fars(®) ]

In our simplified model,

AF
COS(27frot t) + Constant.
2Mfrot

Jy fabs() dt' = fot —
Defining the modulation index f as

4
Frt'

we can rewrite the phase (ignoring an arbitrary constant phase) as:
#(t) = 2mfot + psin ( 2nfreit ).
Thus, the signal becomes
s(t) = Acos [2nfot + fsin (2nfrit)].

This is the canonical form of a frequency-modulated (FM) signal.
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3. Spectral Content via the Jacobi—Anger Expansion

The key to understanding the resulting spectrum is the Jacobi-Anger expansion which
states that

cos(0+psing) = Y J, () cos(0+np),

where:
* J,(B) is the Bessel function of the first kind of order n.

Setting 6 = 2nfot and ¢ = 2frt, our signal becomes:

SO =4 ) J@cos[en(fotnfe)t].

This expression tells us that the modulated signal s(¢) is composed of an infinite series of
sinusoidal components (or "sidebands") at frequencies

fa=fotnf, n=0%1,+2 ..

Each component's amplitude is weighted by J, (8), which depends on the modulation
index B.
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4. Interpretation and Implications

o Peak Separation: The spectrum consists of discrete frequencies that are separated
by exactly f,. This is why you observe maxima (spectral peaks) spaced by the
rotational frequency. The central frequency (the carrier) is at f,, and the sidebands
occur at fo + frup fo & 2fr and soon.

« Modulation Index f: The value of 8 determines how much power is distributed info
the sidebands. For a small § (i.e., when Af is small relative 1o f), only the n = 0 and
n = +1terms are significant. As f increases, higher-order sidebands play a more
substantial role.

o Practical Aspects in Experiments: In experiments with rotating sound sources, the
periodic Doppler effect ensures that the observed pressure signal carries these
modulation sidebands. When you analyze the spectrum of the received signal, the
spacing between these peaks gives you the rotational frequency (since f,o. = Af/B).
This is particularly useful in precise measurements of rotation rates in laboratory or
field experiments.
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5. Example Calculation
Consider a sound source with:

o fo=1000Hz,
o arotation frequency fr: = 2 Hz,

o and a maximum Doppler shift amplitude Af = 10 Hz.

Then, the modulation index is:

10Hz

2Hz

With § = 5, the Bessel functions J,,(5) determine the amplitudes of the sidebands. You'd
see spectral lines at:

o fo(carrier)
* fot2Hz
* fot4Hz
o fo+6Hzetc

The amplitudes of these lines are given by Jo(5), ., (5),J4,(5), ... For example, with
computational tools, you might find that J, () is relatively small compared to, say, J,(5) or
J,(5), meaning that the energy is spread over several sidebands.
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6. Conclusion

In summary, a rotating sound source exhibits a frequency spectrum with sidebands
separated by the rotational frequency because the periodic Doppler shift induces
frequency modulation in the emitted sound. The Jacobi-Anger expansion shows
mathematically that an FM signal is equivalent to a sum of sinusoidal components at
fo + nfex With amplitudes dictated by Bessel functions. The regular spacing of these
sidebands directly reflects the underlying modulation—the rotation rate of the source.

Would you like to explore a numerical simulation in Python o visualize these sidebands, or
perhaps further details on the properties of the Bessel functions in this context?

yes, prepare a python program to visualize the sidebands.

Below is a complete Python program that simulates a frequency-modulated (FM) signal—
representing a rotating sound source—and then computes and plots its Fourier spectrum
to reveal sidebands spaced by the rotation frequency. In addition, the code overlays the
theoretical sideband amplitudes computed from the Bessel functions (via the Jacobi-
Anger expansion) for comparison.

You can adjust the parameters (carrier frequency, modulation frequency/rotation rate,
modulation index, sampling rate, and duration) to suit your needs.
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